Introduction to Digital Logic

- Digital systems use binary numbers
- Decimal numbers are base 10 (digits $0,1, \ldots$)
- Example: $893=8 \times 10^{2}+9 \times 10^{1}+3 \times 10^{0}$
- Binary numbers are base 2 (digits 0,1)
- Example: binary $1101=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=13$
- Example: write decimal 23 in binary

$$
\begin{aligned}
23 & =16+4+2+1 \\
& =1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =10111
\end{aligned}
$$

Binary numbers represent information: numbers, text, colors, etc.

Numbers

Binary	Decimal
$" 000 "$	0
$" 001 "$	1
$" 010 "$	2
$" 011 "$	3
$" 100 "$	4
$" 101 "$	5
$" 110 "$	6
$" 111 "$	7

Text
Binary Character $" 01000000 "$ @ $" 01000001 "$ A $" 01000010 "$ B $" 01000011 "$ C $" 01000100 "$ D $" 01000101 "$ E $" 01000110 "$ F $" 01000111 "$ G

Colors	
Binary	Color
$" 0000 "$	Black
$" 1000 "$	Red
$" 010 "$	Green
$" 001 "$	Blue
$" 0111 "$	Cyan
$" 1001 "$	Magenta
$" 1110 "$	Yellow
$" 1111 "$	White

Where do we use digital logic in electronics?

- Transistors act as switches
- Apply high voltage \rightarrow transistor conducts
- Apply low voltage \rightarrow transistor doesn't conduct
- Can switch very fast
- Digital or Boolean logic describes everything in 1's and 0's
- 1 = high voltage, say > 4 V , means "True" or "On"
- $0=$ low voltage, say $<1 \mathrm{~V}$, means "False" or "Off"
- Logic operations such as NOT, OR, AND act on these logic variables and are easily implemented in transistor circuits called Logic Gates
- Logic operations are represented by Truth Tables which define every possible combination of inputs

Logic Operations: NOT

- Example: A safety light is normally always on, unless you push a button to turn it off.
- Input: 1 = push button, $0=$ don't push button
- Output: 1 = light on, $0=$ light off
- Truth table: button light

- Called NOT operation, output = opposite of input

Logic Operations: OR

- Example: 2-door car, light goes on if either or both doors are open
- Inputs: 1 = door open, 0 = door closed
- Output: $1=$ light on, $0=$ light off
- Truth table: $\frac{\text { door } 1}{}$ door 2 light

- Called OR operation, output = 1 if either or both inputs = 1

Logic Operations: AND

- Example: passenger car window with driver master switch, window only opens if both switches on
- Inputs: 1 = switch on, $0=$ switch off
- Output: 1 = window operates, $0=$ doesn't operate
- Truth table: switch 1 switch 2 window

0	0	0
0	1	0
1	0	0
1	1	1

- Called AND operation, output = 1 only if both inputs = 1
- Can have more inputs and more complicated logic
- Example: Joe drives instead of bikes to school if its cold and/or raining, and he has an early class
- Inputs: $A=1$ cold $B=1$ raining $C=1$ early class 0 warm 0 dry 0 no early class
- Output: 1 = drives, $0=$ bikes

Truth table:

A	B	C	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Out $=(\mathrm{A} O R B)$ AND C

Math Symbols and Circuit (Logic Gate) Symbols

- Math symbols: $\mathrm{NOT}=\overline{\mathrm{A}}, \mathrm{OR}=\mathrm{A}+\mathrm{B}, \mathrm{AND}=\mathrm{A} \cdot \mathrm{B}($ or AB$)$
- Circuits that perform these operations called Logic Gates
NOT:
OR:
AND:

A- \triangle - NOT_A

- Joe example: Out $=(A+B) \cdot C$

Transistors behave as inverters

- $\mathrm{V}_{\text {in }}=$ Low, no I flows, $\mathrm{V}_{\text {out }}=$ High ($\left.=\mathrm{V}_{\text {supply }}\right)$
- $\mathrm{V}_{\text {in }}=$ High, large I flows, $\mathrm{V}_{\text {out }}=$ Low (large voltage dropped across R)
- $\mathrm{V}_{\text {out }}=$ NOT $\mathrm{V}_{\text {in }}$

in	out
1	0
0	1

- More convenient to build circuits which use inverse of OR, AND - called NOR, NAND

NOR and NAND Gates

- $\operatorname{OR}+$ NOT $=$ NOR: output low if any input high

A	B	$A+B$	$\overline{A+B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

- AND + NOT = NAND: output low if all inputs high; demo on logic.ly

A	B	$A B$	$\overline{A B}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Simulators

- Logic.ly
- Examples of lab circuit - do it in class

More circuits

- Logic.ly
- Example of half-adder circuit - use logic.ly to construct

Inputs		Outputs	
A	B	C	S
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	0

Half adder using NAND logic

Half adder using NOR logic

More circuits

